当前位置:主页 > 神机娱乐资讯 >
精密仪- 仪器信息网
时间:2023-08-25 06:08 点击次数:95

  惠州市合呈精密仪器有限公司,是一家专注于精密光学测量仪器的高科技企业。本公司研发、生产、销售、服务的主要产品有:移动龙门全自动影像测量仪、固定龙五全自动影像测量仪、全自动影像测量仪、一键式快速测量仪、手动/半自动影像测量仪、刀具检测仪、金相测量显微镜、光学显微镜。公司秉承质量第一,服务至上,科技创新,永续发展”的经营理念,以从业10余年以上的优秀技术团队为基础,引进国外先进技术,结合行业实际需求,开发出技术领先、功能强大、品质稳定的光学测量仪器。公司多年来服务于:计量研究院、航空航天、汽车零件、手机零件、精密加工、精密电子、精密模具、精密塑胶、精密橡胶、智能电器、精密钟表/弹簧等行业。

  西安市高精密仪表厂为集体所有制企业创立于1988年,公司主要生产温度、压力等显示测试仪表,是国内最早生产精密压力表和活塞式压力计的厂家之一,1994年被评为国家二级计量单位,目前在职员工124人,残疾人8人,高级工程师20人。西安市高精密仪表厂成立之初一直秉承材料,工艺,人员三优原则,不因市场竞争而改变三优原则,材料精挑细选,工艺精益求精,人员工匠之心,打造高质量的压力温度计量仪器。其中精密压力表悬浮结构获得国家发明专利(高精度高稳定性且不怕摔为主要特点)。西安市高精密仪表厂因坚守三优原则在市场获得了较高的评价和口碑,在未来的发展中,西安市高精密仪表厂会坚守这份初心,用产品说话,用质量说话,在所属领域用最好的产品回馈客户。

  恒一企业有限公司1993年成立于中国香港,是进口高科技分析检测仪器在中国、香港、澳门的总代理。其中包括:日本FUTURE-TECH公司生产的硬度计系列,德国KB公司生产的电加载布洛维万能硬度计系列;日本JBC公司生产的硬度计系列、曲轴硬度计系列及金相制样设备系列等,并负责上述仪器的销售和技术服务。上海恒一精密仪器有限公司在硬度计生产、研发、技术应用的领域,拥有经验丰富的工程技术人员和能力。生产的恒一MH系列硬度计、VH系列硬度计、RH系列硬度计,不但有先进的功能,而且有稳定、可靠的质量。研发的曲轴硬度计等产品达到国际先进技术水平,面向国内及国际市场销售。上述产品广泛用于冶金、航空、电子、机械、汽车、造船、铁路等行业。在金属材料研发、检测及分析领域拥有大量客户,尤受航天军工及科研院所的信赖。公司在香港、北京、上海、成都、西安、徐州分别设有办事处,提供技术咨询、业务洽谈和售后技术服务,随时欢迎行业相关人士前来洽谈、体验及交流。上海恒一精密仪器有限公司在硬度测试及其他领域,有能力为用户定制开发实用新型技术并提供更多的知识及帮助用户解决更多的实际测量工作。

  仪器简介:卓立汉光生产KSA系列高精度电移台采用新结构、新工艺,经过严格检测,关键指标达到国际同类产品水平。该系列电移台产品主要应用于运动直线度要求较高的领域,如飞秒激光试验、激光精密加工和三维扫描测量系统等。技术参数:型号KSA050 -11/12-X KSA100 -11/12-X KSA150 -11/12-X KSA200 -11/12-X KSA300 -11/12-X KSA400 -11/12-X行程(mm) 50/100 /150 /200 /300 /400导程(mm) 4 /5闭环分辨率(&mu m) 1开环分辨率(&mu m) 2.5 /3.125最大速度(mm/sec.) 40 /50重复定位精度(&mu m) 回程间隙(&mu m) 偏摆(&Prime ) 俯仰(&Prime ) 运动直线运动平行度(&mu m) 10 /12 /15 /20步进电机(步距角) 42(1.8° ) /57(1.8° )工作电流(A) 1.7 /2.4中心负载 30 /30 /30 /30 /50主要特点:◆高精密滚珠丝杠驱动,超精密线性滑轨导向,有效保证了运动精度和直线性,其它外购件也采用知名品牌产品;◆关键、主要自制件进行超精密加工,加工精度高;◆装配工艺严格、独特,保证了产品的性能一致性;◆左右极限开关和零位开关设计,保证了产品运行安全;◆标配进口光栅尺,配合MC600系列控制箱,可实现闭环控制。

  摘要:真空压力热成型技术作为一种精密成型工艺在诸如隐形牙套等制作领域得到越来越多的重视,其主要特点是要求采用高精度的正负压力控制手段来抵消重力对软化膜变形的影响以及精密控制成型膜厚度。本文提出了相应的改进解决方案,通过可编程的纯正压控制技术实现软化摸上下压差以及热成型压力的精密调节,在保证产品质量的同时可简化控制系统。

  为了满足低压渗碳工艺中对真空度精密控制的要求,本文提出了相应的解决方案,其中包括增加一个混气罐用于渗透气体混合、采用上游和下游形式的动态控制方法和真空度与温度同时配合控制方法,由此可实现渗透工艺中真空度和温度的快速和精密控制。

  为了实现阶梯光栅光谱仪的高精度测量,要在全过程中对温度和压力进行长时间的精密恒定控制。本文将针对阶梯光栅光谱仪中压力的精密控制,介绍压力的自动化控制技术,并详细介绍了具体实施方案,其中特别介绍了控制效果更好的双向控制模式。

  实验室的有形部分是由一群人,和一堆仪器组成的。仪器分为普通仪器和精密仪器。你们把什么样的仪器叫做精密仪器呢?或者,量化一下,多少价位的仪器叫精密仪器?

  这是我在做的毕业设计:请问大家怎么做呢?谢谢内容要求:(包括规定阅读的文献、应完成的程序、图纸、实验、说明书等)1、查阅量值溯源体系系统与精密仪器溯源方法等相关的期刊文献资料。2、论述精密仪器的各种常用溯源方法。3、针对存在国家基准的某种精密仪器加以论述。4、针对不存在国家基准的某种精密仪器加以论述。5、试进行溯源方法的不确定度评定。6、按要求写出毕业论文。

  德国德图testo416精密型叶轮风速仪联系电话: 联系人:张祥峰德国德图testo416精密型叶轮风速仪,带固定式叶轮探头,直径16mm,带伸缩手柄(最长890mm),包括电池和标定证书。德国德图testo416精密型叶轮风速仪产品介绍:testo 416精密型叶轮风速仪,配备固定式叶轮探头,带伸缩手柄(最长890mm)。直接显示体积流量。输入管道截面积,即可精确计算出体积流量。仪器具有时间段或多点平均值计算功能,用于计算平均流量。可显示最大值、最小值,带读数保持功能。德国德图testo416精密型叶轮风速仪优点一览:· 直接显示体积流量· 计算多点/时间段平均值· 显示最大值、最小值· 保持键,保持读数· 带背光灯· 自动关机功能· 保护软套,防水防尘、防撞击技术资料存放温度-40~+85 ℃工作温度-20~+50 ℃电池类型9V 块状电池, 6F22电池寿命80 h重量325 g尺寸182 x 64 x 40 mm外壳ABS探头类型 叶轮探头量程+0.6~+40 m/s精度± (0.2 m/s +1.5%测量值)分辨率0.1 m/s

  气相色谱仪配件之精密平面六通进样阀六通阀相关知识: 六通阀实现进样实际上就是将对角两点间的气路切换到两侧气路的切换阀,其实现方式有三种,有拉杆式、平面式、膜片式。 在六通阀末端,有一矩型接口,直接插入阀驱动上。驱动阀两端,各有一路进气口,始终是一端带气一端泄压,这样就可以带动阀杆转动和复原。气路上也就是进样和取样。这是自动进样程序。如果是手动六通阀,用手直接转动阀杆即可。六通阀孔是两两相通的。两组不通的孔道,可用短管跨接即可。 在阀体两侧各有一个进气口。气源由一路供应,进入分配器后,分为两路,两路中每一路又一分为二,一路为进气位,一路为出气位。当阀气进入一路的进位时,由于气压的推动,带动阀杆转动,至出气位,压力泄空。表现在六通阀上,阀撞针由初始档到末位档,气路也就切换了;要复位时,二路进位带压,推动阀体带动阀杆转动复位至泄压位。六通阀气路复原。还有一种是单路切换。也就是控制一路进气,一路泄压即可。即进气时,推动阀体转动180度,六通阀切换气路。复原时,只需泄压,弹簧惯性将阀拉回或顶回。两种原理只是我从仪器实际解剖中得来的,我曾多次检修过此类阀,十通阀的原理也是如此,并无理论资料验证,技术术语为个人解释,有不到的地方请原谅。另:这两种驱动阀皆由程序控制的,控制程序可自行设定。精密平面六通进样阀详细参数介绍:产品名称型号规格产地精密平面三通阀KF-3Φ2/Φ3南京精密平面四通阀KF-4Φ2/Φ3南京精密平面六通阀KF-6Φ2/Φ3南京精密平面八通阀KF-8Φ2/Φ3南京精密平面十通阀KF-10Φ2/Φ3南京精密平面十二通阀KF-12Φ2/Φ3南京

  产品描述:ASPIN美国进口精密定量移液管材质:玻璃 容量校准为“In”蚀刻、不可拭除的容量标记;高温上釉铭文带彩色编码和批次证书ASPIN美国进口精密定量移液管: ASPIN移液管的吸头厚度足以耐受冲击。末端较薄,呈锥形且经过抛光。机械生产工艺能够确保其形状整齐、一致。A+级的公差精确度是A级的两倍。 ASPIN美国进口精密定量移液管产品规格:容量误差长度包装规格VWR目录号10ml0,012±ml450mm1VWRF09551.207

  2022年9月8日,摩方精密被日本精密工学会正式授予“日本精密工学会制造奖”,成为全球第三家获得该奖项的非日本本土企业,也是第一家来自中国的企业,而此前获得过此殊荣的国外企业,只有德国的两家公司。这也是摩方精密继获得国际光学工程学会棱镜奖、TCT2022最佳硬件及聚合物系统奖后,再次斩获国际重量级奖项。日本精密工学会成立于1933年,到目前为止,在全球范围内已拥有包括高等院校、研究机构以及知名企业在内的5500多个成员,在世界精密制造工业领域中,尤其是在精密设计、精密加工、精密机械、精密计量、环境工学、表面材料、医学器械等诸多领域,始终占据着领导者地位。日本精密工学会设奖目的在于,一方面奖励具有卓越的开发力和工业改善力的优秀新型产品或具有促进制造业发展作用的高新技术;另一方面奖励在精密工程领域开发出具有高社会价值产品和技术的优秀企业,以肯定他们的努力和贡献,支持他们进一步发展。因此,此次获奖,无疑对摩方精密在精密加工制造领域的技术实力和突出贡献给予了高度的肯定和莫大的鼓励。摩方精密作为全球微纳3D打印和精密加工领域先行者和领导者,今后将凭借领先于行业的卓越技术实力,为全球制造产业的发展、科学技术的进步做出更大的贡献。

  超精密高速激光干涉位移测量技术与仪器杨宏兴1,2,付海金1,2,胡鹏程1,2*,杨睿韬1,2,邢旭1,2,于亮1,2,常笛1,2,谭久彬1,21哈尔滨工业大学超精密光电仪器工程研究所,黑龙江哈尔滨150080;2哈尔滨工业大学超精密仪器技术及智能化工业和信息化部重点实验室,黑龙江哈尔滨150080摘要针对微电子光刻机等高端装备中提出的超精密、高速位移测量需求,哈尔滨工业大学深入探索了传统的共光路外差激光干涉测量方法和新一代的非共光路外差激光干涉测量方法,并在高精度激光稳频、光学非线性误差精准抑制、高速高分辨力干涉信号处理等多项关键技术方面取得持续突破,研制了系列超精密高速激光干涉仪,激光真空波长相对准确度最高达9.6×10-10,位移分辨力为0.077nm,光学非线m/s。目前该系列仪器已成功应用于我国350nm至28nm多个工艺节点的光刻机样机集成研制和性能测试领域,为我国光刻机等高端装备发展提供了关键技术支撑和重要测量手段。关键词光学设计与制造;激光干涉;超精密高速位移测量引言激光干涉位移测量(DMLI)技术是一种以激光波长为标尺,通过干涉光斑的频率、相位变化来感知位移信息的测量技术。因具有非接触、高精度、高动态、测量结果可直接溯源等特点,DMLI技术和仪器被广泛应用于材料几何特性表征、精密传感器标定、精密运动测试与高端装备集成等场合。特别是在微电子光刻机等高端装备中嵌入的超精密高速激光干涉仪,已成为支撑装备达成极限工作精度和工作效率的前提条件和重要保障。以目前的主流光刻机为例,其内部通常集成有6轴至22轴以上的超精密高速激光干涉仪,来实时测量高速运动的掩模工件台、硅片工件台的6自由度位置和姿态信息。根据光刻机套刻精度、产率等不同特性要求,目前对激光干涉的位移测量精度需求从数十纳米至数纳米,并将进一步突破至原子尺度即亚纳米量级;而位移测量速度需求,则从数百毫米每秒到数米每秒。对DMLI技术和仪器而言,影响其测量精度和测量速度提升的主要瓶颈包括激光干涉测量的方法原理、干涉光源/干涉镜组/干涉信号处理卡等仪器关键单元特性以及实际测量环境的稳定性。围绕光刻机等高端装备提出的超精密高速测量需求,以美国Keysight公司(原Agilent公司)和Zygo公司为代表的国际激光干涉仪企业和研发机构,长期在高精度激光稳频、高精度多轴干涉镜组、高速高分辨力干涉信号处理等方面持续攻关并取得不断突破,已可满足当前主流光刻机的位移测量需求。然而,一方面,上述超精密高速激光干涉测量技术和仪器已被列入有关国家的出口管制清单,不能广泛地支撑我国当前的光刻机研发生产需求;另一方面,上述技术和仪器并不能完全满足国内外下一代光刻机研发所提出的更精准、更高速的位移测量需求。针对我国光刻机等高端装备研发的迫切需求,哈尔滨工业大学先后探索了传统的共光路双频激光干涉测量方法和新一代的非共光路双频激光干涉测量方法,并在高精度激光稳频、光学非线性误差精准抑制、高速高分辨力干涉信号处理等关键技术方面取得持续突破,研制了系列超精密高速激光干涉仪,可在数米每秒的高测速下实现亚纳米级的高分辨力高精度位移测量,已成功应用于我国350nm至28nm多个工艺节点的光刻机样机集成研制和性能测试领域。该技术和仪器不仅直接为我国当前微电子光刻机研发生产提供了关键技术支撑和核心测量手段,而且还可为我国7nm及以下节点光刻机研发提供重要的共性技术储备。高精度干涉镜组设计与研制高精度干涉镜组的3个核心指标包括光学非线性、热稳定性和光轴平行性,本课题组围绕这3个核心指标(特别是光学非线性)设计并研制了前后两代镜组。共光路多轴干涉镜组共光路多轴干涉镜组由双频激光共轴输入,具备抗环境干扰能力强的优点,是空间约束前提下用于被测目标位置/姿态同步精准测量不可或缺的技术途径,并且是光刻机定位系统精度的保证。该类干涉镜组设计难点在于,通过复杂光路中测量臂和参考臂的光路平衡设计保证干涉镜组的热稳定性,并通过无偏分光技术和自主设计的光束平行性测量系统,保证偏振正交的双频激光在入射分光及多次反射/折射后的高度平行性[19-20]。目前本课题组研制的5轴干涉镜组(图11)可实现热稳定性小于10nm/K、光学非线nm以及任意两束光的平行性小于8″,与国际主流商品安捷伦Agilent、Zygo两束光的平行性5″~10″相当。图11.自主研制的共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图非共光路干涉镜组非共光路干涉镜组在传统共光路镜组的基础上,通过双频激光非共轴传输避免了双频激光的频率混叠,优化了纳米量级的光学非线年,本课题组提出了一种非共光路干涉镜组结构[2,21],具体结构如图12所示,测试可得该干涉镜组的光学非线pm。并进一步发现基于多阶多普勒虚反射的光学非线性误差源,建立了基于虚反射光迹精准规划的干涉镜组光学非线性优化算法,改进并设计了光学非线pm的非共光路干涉镜组[2-3],并通过双层干涉光路结构对称设计保证热稳定性小于2nm/K[22-25]。同时,本课题组也采用多光纤高精度平行分光,突破了共光路多轴干涉镜组棱镜组逐级多轴平行分光,致使光轴之间的平行度误差逐级累加的固有问题,保证多光纤准直器输出光任意两个光束之间的平行度均小于5″。图12.自主设计的非共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图基于上述高精度激光稳频、光学非线性误差精准抑制、高速高分辨力干涉信号处理等多项关键技术,本课题组研制了系列超精密高速激光干涉仪(图17),其激光线nm,最低光学非线)。并成功应用于上海微电子装备(集团)股份有限公司(SMEE)、中国计量科学研究院(NIM)、德国联邦物理技术研究院(PTB)等十余家单位,在国产光刻机、国家级计量基准装置等高端装备的研制中发挥了关键作用。图17.自主研制的系列超精密高速激光干涉仪实物图。(a)20轴以上超精密高速激光干涉仪;(b)单轴亚纳米级激光干涉仪;(c)三轴亚纳米级激光干涉仪超精密激光干涉仪在精密工程中的实际测量,不仅考验仪器的研制水平,更考验仪器的应用水平,如复杂系统中的多轴同步测量,亚纳米乃至皮米量级新误差源的发现与处理,高水平的温控与隔振环境等。下面主要介绍超精密激光干涉仪的几个典型应用。国产光刻机研制:多轴高速超精密激光干涉仪在国产光刻机研制方面,多轴高速超精密激光干涉仪是嵌入光刻机并决定其光刻精度的核心单元之一。但是,一方面欧美国家在瓦森纳协定中明确规定了该类干涉仪产品对我国严格禁运;另一方面该类仪器技术复杂、难度极大,我国一直未能完整掌握,这严重制约了国产光刻机的研制和生产。为此,本课题组研制了系列超精密高速激光干涉测量系统,已成功应用于我国350nm至28nm多个工艺节点的光刻机样机集成研制和性能测试领域,典型应用如图18所示,其各项关键指标均满足国产先进光刻机研发需求,打破了国外相关产品对我国的禁运封锁,在国产光刻机研制中发挥了重要作用。在所应用的光刻机中,干涉仪的测量轴数可达22轴以上,最大测量速度可达5.37m/s,激光真空波长/频率准确度最高可达9.6×10−10(k=3),位移分辨力可达0.077nm,光学非线pm。配合超稳定的恒温气浴(3~)和隔振环境,可以对光刻机中双工件台的多维运动进行线位移、角位移同步测量与解耦,以满足掩模工件台、硅片工件台和投影物镜之间日益复杂的相对位置/姿态测量需求,进而保证光刻机整体套刻精度。图18.超精密高速激光干涉测量系统在光刻机中的应用原理及现场照片国家级计量基准装置研制:亚纳米精度激光干涉仪在国家级计量基准装置研制方面,如何利用基本物理常数对质量单位千克进行重新定义,被国际知名学术期刊《Nature》评为近年来世界六大科学难题之一。在中国计量科学研究院张钟华院士提出的“能量天平”方案中,关键点之一便是利用超精密激光干涉仪实现高准确度的长度测量,其要求绝对测量精度达到1nm以内。为此,本课题组研制了国内首套亚纳米激光干涉仪,并成功应用于我国首套量子化质量基准装置(图19),在量子化质量基准中国方案的实施中起到了关键作用,并推动我国成为首批成功参加千克复现国际比对的六个国家之一[30-32]。为达到亚纳米级测量精度,除了精密的隔振与温控环境以外,该激光干涉仪必须在真空环境下进行测量以排除空气折射率对激光波长的影响,其测量不确定度可达0.。此外,为了实现对被测对象的姿态监测,该干涉仪的测量轴数达到了9轴。图19.国家量子化质量基准及其中集成的亚纳米激光干涉仪结论近年来,随着高端装备制造、精密计量和大科学装置等精密工程领域技术的迅猛发展,光刻机等高端制造装备、能量天平等量子化计量基准装置、空间引力波探测等重大科学工程对激光干涉测量技术提出了从纳米到亚纳米甚至皮米量级精度的重大挑战。对此,本课题组在超精密激光干涉测量方法、关键技术和仪器工程方面取得了系列突破性进展,下一步的研究重点主要包括以下3个方面:1)围绕下一代极紫外光刻机的超精密高速激光干涉仪的研制与应用。在下一代极紫外光刻机中,其移动工件台运动范围、运动精度和运动速度将进一步提升,将要求在大量程、6自由度复杂耦合、高速运动条件下实现0.1nm及以下的位移测量精度,对激光干涉仪的研发提出严峻挑战;极紫外光刻机采用真空工作环境,可减小空气气流波动和空气折射率引入的测量误差,同时也使整个测量系统结构针对空气-真空适应性设计的复杂性大幅度增加。2)皮米激光干涉仪的研制与国际比对。2021年,国家自然科学基金委员会(NSFC)联合德国科学基金会(DFG)共同批准了中德合作项目“皮米级多轴超精密激光测量方法、关键技术与比对测试”(2021至2023年)。该项目由本课题组与德国联邦物理技术研究院(PTB)合作完成,预计将分别研制下一代皮米级精度激光干涉仪,并进行国际范围内的直接比对。3)空间引力波探测。继2017年美国LIGO地面引力波探测获诺贝尔物理学奖后,各国纷纷开展了空间引力波探测计划,这些引力波探测器实质上就是巨型的超精密激光干涉仪。其中,中国的空间引力波探测计划,将借助激光干涉仪在数百万公里距离尺度上,实现皮米精度的超精密测量,本课题组在引力波国家重点研发技术项目的支持下,将陆续开展卫星-卫星之间和卫星-平台质量块之间皮米级激光干涉仪的设计和研究,特别是皮米级非线性实现和皮米干涉仪测试比对的工作,预期可对空间引力波探测起到积极的支撑作用。本课题组在超精密激光干涉测量技术与仪器领域有超过20年的研究基础,建成了一支能够完全自主开发全部激光干涉仪核心部件、拥有完整自主知识产权的研究团队,并且在研究过程中得到了12项国家自然科学基金、2项国家科技重大专项、2项国家重点研发计划等项目的支持,建成了超精密激光测量仪器技术研发平台和产业化平台,开发了系列超精密激光干涉测量仪,在国产先进光刻机研发、我国量子化质量基准装置等场合成功应用,推动了我国微电子光刻机等高端装备领域的发展,并将通过进一步研发,为我国下一代极紫外光刻机研发、空间引力波探测、皮米激光干涉仪国际比对提供支撑。全文详见:超精密高速激光干涉位移测量技术与仪器.pdf

  导语:制造业是国家生命的命脉,精密制造是未来制造业发展的一种趋势。2018年,全球精密机加工市场规模达到2160亿美元,同比增长1.9%。精密制造业覆盖航空、医疗、汽车、消费电子、通信等各个领域。现阶段,中国精密制造业总体呈现区域发展不均衡、企业规模较小、实力较弱、产值增长较快等特点,且难以协调厂商需求的批量生产、成本可控与客户需求的产品质量稳定性、一致性之间的矛盾。高精密3D打印作为先进制造业的重要组成部分,解决了传统加工工艺过程复杂、成本高、难度大的痛点,成为现代精密制造业不可缺少的“产业新力量”精密制造业现状:需求大,难度高,投入大精密制造业主要包括精密和超精密加工技术、制造自动化两大领域,前者追求加工上的精度和表面质量极限,后者包括了产品设计、制造和管理的自动化,两者是密切合作、相辅相成的关系,皆具有全局的、决定性的作用,是先进制造技术的支柱。精密和超精密机加工行业一直是劳动密集、资金密集和技术密集型行业,行业门槛较高,企业需达到一定规模才能产生利润。自动化精密模具包括结构工艺复杂的成型模具和高精度成型模具。结构工艺复杂的模具是在较小的模具体积上需要做出很多功能的实现;高精度模具主要是指成型的产品尺寸变化微小,一致性非常高,模具往往体积不大,但造价高昂。根据罗兰贝格数据统计,2011-2018年,全球精密机加工市场规模复合年增长率为0.2%;到2018年,全球精密机加工市场规模达到2160亿美元,同比增长1.9%。其中,全球精密机加工外包市场规模达1480亿美元,占全球总规模的69%。资料来源:罗兰贝格前瞻产业研究院整理精密制造业提供的是制造业的关键零部件,是制造业的最顶端,利润最丰厚的核心部分。从规模上来看,精密制造业可以覆盖整个制造业的大约三分之一。精密制造主要用于生产复杂的零件及制成品的完整组建,具体领域包括航空、医疗、汽车、消费电子、通信等等。得益于这些下游领域的需求支撑,全球精密制造业市场保持稳定。精密制造业技术永恒的主题就是高效率与高精度。目前,中国的制造业与世界制造业强国相比仍有较大差距,其中最突出的表现之一是精密零部件的加工能力滞后,主要因其在质量、一致性、耐用性等方面的要求非常高。虽然中国精密零部件加工厂商数量众多,但技术水平和加工能力参差不齐。即使部分的国内配套加工厂商通过购进先进的生产设备等方式可以达到精密零部件的加工质量要求,但却常常难以在批量生产、成本可控的条件下保持产品质量的稳定性和一致性。摩方批量打印齿轮一般来说,高质量精密零部件加工制造不仅需要先进的生产设备等硬件配备,更需要根据部件的产品特点和客户需求,设计和实施科学合理的生产工艺,平衡加工质量、产品交期和成本控制等多个相互影响的制约因素,同时,还要实现设备、工具和人员等生产资源的优化组合。总体而言,这是一个需要多项投入、多方考量、环环把控的行业。那么,面对精密制造业市场的巨大刚性需求,以及国家振兴精密制造业的发展趋势,是否可以实现既满足较高的精密产品质量与技术需求、又能实现可控的时间和成本投入?高精密3D打印——现代精密制造的“产业新力量”在传统加工工艺无法满足高质量精密零部件快速交付需求的现状下,市场需求将目光逐步引导至近些年高速发展的增材制造工艺。增材制造是先进制造业的重要组成部分,随着全球范围内新一轮科技与产业革命的蓬勃兴起,世界各国纷纷将其作为未来产业发展的新增长点。中国《“十三五”国家战略性新兴产业发展规划》,《中国制造2025》等均把增材制造列入重点领域。增材制造又称3D打印技术,它完全解决了传统加工工艺过程复杂、成本高、难度大等痛点,能够准确、快速、灵活设计各种复杂结构。而高精密3D打印更是成为现代精密制造业不可缺少的“产业新力量”,虽目前仍处于发展早期,但其突破复杂三维微纳结构器件的精密快速成型与直接生产制造,在微小精密部件的开发与小批量阶段,以“成型效率高、加工成本低”的突出优势受到高质量精密零部件加工市场的倍加青睐,而这种高效率的“时间差”带来的收益已经成为一些公司的利润来源。目前在全球范围内,PμSL面投影立体光刻技术(ProjectionMicroStereolithography)是已经成熟商业化的能够实现高精密3D打印的的微纳光固化3D打印技术之一。PμSL在实验室阶段可实现几百纳米精度,已经商业化的产品可达几微米的打印精度,多见于深圳摩方科技的nanoArch系列微纳3D打印设备——全球首款商业化的PμSL面投影微立体光刻技术微尺度3D打印设备产品,涵盖多款型号机型,可以提供2μm超高精度3D打印系统。PμSL加工速度快、打印幅面大、加工成本低以及宽松的环境要求等特点,使其在工业应用领域已实现了内窥镜、导流钉、连接器、封装测试材料等部件的批量加工和应用,为国内外多个大型公司提供高精密加工方案。在此列举2个高精密3D打印应用较为广泛的案例:连接器与内窥镜。连接器尺寸5.65mm*2mm*2.8mm,最小pin间距0.14mm,最小壁厚0.1mm;内窥镜端部座中的圆管壁厚为70μm,管径1mm,高度4mm。精度要求皆为±10-25μm。CNC和开模注塑很难加工这种逼近极限的结构,深圳摩方公司可以在约1-2小时内就加工出来,最快一天内交付。同时,也极大的降低了制造成本。深圳摩方——助力振兴中国精密制造业振兴精密制造业是中国经济跨越发展的重要一环。着眼未来,借助高精密3D打印设备和技术来提升零部件制造的精度,将成为精密零部件制造的一大趋势。从工业市场出发,效率和成本是决定盈利与否的关键因素。深圳摩方的高精密3D打印设备与技术,在缩短制造周期、降低制造成本、提升产品性能等方面,很好的契合了精密制造业创新发展的技术精度需求与市场盈利需求。中国精密制造实现振兴将如虎添翼,未来可期。

Copyright © 2027 神机娱乐注册 TXT地图 HTML地图 XML地图