当前位置:主页 > 神机娱乐资讯 >
传感器有几大类?
时间:2023-10-25 09:13 点击次数:160

  不同的传感器的基本原理都不一样,这里主要会介绍:霍尔传感器、压力传感器、磁敏传感器、温度传感器、位置传感器、加速度传感器。可以直接点击下方链接跳转,也可以直接看下面的文章:

  霍尔效应是由带电粒子(如电子)相应电场和磁场的相互作用引起的。更为形象生动的大家可以看下面这个霍尔效应原理动画图。

  当导电板连接到带有电池的电路时,电流开始流动。电荷载体将沿着从板的一端到另一端的线性路径。电荷载流子的运动导致磁场的产生。当磁体靠近板放置时,电荷载流子的磁场会发生畸变。这扰乱了电荷载流子的直线流动。扰乱电荷载流子流动方向的力称为洛伦兹力。

  由于电荷载流子磁场的畸变,带负电的电子将偏转到板的一侧,而带正电的空穴将偏转到板的另一侧。在板的两侧之间会产生一个电位差,称为霍尔电压,可以用仪表测量。

  霍尔效应原理表明:当将载流导体或半导体引入垂直磁场时,可以在电流路径成直角的位置测量电压。

  当传感器周围的磁通密度超过某个预设阈值时,传感器会检测到它并产生称为霍尔电压 VH的输出电压。具体的原理如下图所示。

  霍尔效应传感器基本上由一块薄薄的矩形 p 型半导体材料组成,例如砷化镓 (GaAs)、锑化铟 (InSb) 或砷化铟(InAs),其自身通过连续电流。

  当霍尔效应传感器放置在磁场中时,磁通量线对半导体材料施加一个力,使载流子、电子和空穴偏转到半导体板的任一侧。电荷载流子的这种运动是它们穿过半导体材料时所经历的磁力的结果。

  当这些电子和空穴向侧面移动时,由于这些电荷载流子的积累,在半导体材料的两侧之间会产生电位差。然后,电子通过半导体材料的运动受到与其成直角的外部磁场的影响,这种影响在扁平矩形材料中更大。

  霍尔效应提供有关磁极类型和磁场大小的信息。例如,南极会使设备产生电压输出,而北极则不会产生任何影响。通常,霍尔效应传感器和开关设计为在不存在磁场时处于“关闭”状态(开路状态)。它们只有在受到足够强度和极性的磁场时才会“打开”(闭路条件)。

  在最简单的形式中,传感器作为模拟传感器工作,直接返回电压。在已知磁场的情况下,可以确定其与霍尔板的距离。使用传感器组,可以推断出磁体的相对位置。

  通常,霍尔效应传感器与允许设备以数字(开/关)模式运行的电路相结合,并且在此配置中可能被称为开关。下图为包含两个磁铁的轮子经过霍尔效应传感器,可以明显的看到灯的变化。

  大多数霍尔效应器件不能直接切换大型电气负载,因为它们的输出驱动能力非常小,大约为 10 到 20mA。对于大电流负载,在输出中添加一个集电极开路(电流吸收)NPN 晶体管。如下图所示:

  该晶体管在其饱和区域中作为 NPN 灌电流开关工作,只要施加的磁通密度高于“ON”预设点的磁通密度,就会将输出端子短接到地。

  输出开关晶体管可以是发射极开路晶体管、集电极开路晶体管配置或两者都提供推挽输出类型配置,该配置可以吸收足够的电流以直接驱动许多负载,包括继电器、电机、LED 和灯。

  霍尔效应传感器可提供线性或数字输出。线性(模拟)传感器的输出信号直接取自运算放大器的输出,输出电压与通过霍尔传感器的磁场成正比。该输出霍尔电压为:

  线性或模拟传感器提供连续的电压输出,该输出随强磁场增加而随着弱磁场减少。在线性输出霍尔效应传感器中,随着磁场强度的增加,来自放大器的输出信号也会增加,直到它开始因施加电源的限制而饱和。

  霍尔效应传感器由磁场激活,在许多应用中,该设备可以通过连接到移动轴或设备的单个永磁体来操作。有许多不同类型的磁铁运动,例如“正面”、“侧身”、“推拉”或“推-推”等感应运动。

  使用每种类型的配置,以确保最大灵敏度,磁通线必须始终垂直于设备的感应区域,并且必须具有正确的极性。

  此外,为了确保线性,需要高场强磁铁,以便为所需的运动产生较大的场强变化。检测磁场有多种可能的运动路径,以下是使用单个磁体的两种更常见的传感配置:正面检测和侧向检测。

  顾名思义,“正面检测”要求磁场垂直于霍尔效应传感设备,并且为了检测,它直接朝向有源面接近传感器。一种“正面”的方法。

  这种正面方法会产生一个输出信号VH,它在线性器件中表示磁场强度,即磁通量密度,它是距霍尔效应传感器的距离的函数。距离越近,磁场越强,输出电压越大,反之亦然。

  线性器件还可以区分正磁场和负磁场。非线性装置可以在远离磁铁的预设气隙距离处触发输出“ON”,以指示位置检测。

  第二种传感配置是“横向检测”。这需要在霍尔效应元件的表面上横向移动磁铁。

  当磁场在固定气隙距离内穿过霍尔元件的表面时,侧向或滑过检测对于检测磁场的存在很有用,例如,计算旋转磁铁或电机的旋转速度。

  根据磁场通过传感器零场中心线时的位置,可以产生表示正输出和负输出的线性输出电压。这允许定向运动检测,它可以是垂直的也可以是水平的。

  根据设备的类型(无论是数字的还是线性的),有许多不同的方法可以将霍尔效应传感器连接到电气和电子电路。一个非常简单且易于构建的实例如下图:

  当不存在磁场(0 )时,正面位置检测器将“关闭”。当永磁体南极(正高斯)垂直移动到霍尔效应传感器的有效区域时,设备将“打开”并点亮 LED。一旦切换“ON”,霍尔效应传感器将保持“ON”。

  霍尔效应传感器提供的测量精度远低于磁通门磁力计或基于磁阻的传感器。此外,霍尔效应传感器漂移显着,需要补偿。

  以上就是关于霍尔传感器的一些介绍,希望大家多多支持我,收藏、点赞、有什么疑问欢迎在评论区留言,还可以分享给身边的工程师朋友。

  这个压力是单位面积上施加在表面上的力的表达,准确的说法是压强,通常测量液体、空气、其他气体的压力等。

  压力传感器只是监控这个压强,并可以在世界上已知的几个单位之一中显示它。这通常是“帕斯卡”、“巴”和“PSI”(磅/平方英寸)。

  当我们给轮胎充气时,它施加在轮胎上的力会增加,导致轮胎充气,通过轮胎内的压力传感器进行监控的。

  压力传感器是将气体或液体中的输入机械压力转换为电输出信号的传感器或仪器。压力传感器由可以测量、检测或监控施加压力的压敏元件和将信息转换为电输出信号的电子元件组成。

  压力传感器具有两个重要特性:(1) 提供承受高压的坚固性;(2) 具有弹性以最小程度地变形并在受压时恢复其原始形状。

  因此,这些通常也被称为压力变送器。使用的两个常见信号是 4 到 20 mA信号和 0 到 5 V 信号。

  这是当材料响应应力而产生电荷时,这种应力通常是压力,但也可能是扭曲、弯曲或振动。

  压力传感器需要校准,以便知道什么电压或毫安 (mA) 信号对应于什么压强,这是基本的“零”和“跨度”校准或最小值和最大值,这是维护人员的常见工作。

  压阻传感元件也可以以类似的桥接形式排列。下图说明了桥式压力传感器的传感元件是如何连接到柔性膜片上的,因此电阻会根据膜片偏转的大小而变化。压力传感器的整体线性度取决于膜片在规定测量范围内的稳定性,以及应变片或压阻元件的线性度。

  应变计压力传感器适用于测量极高和极低的压力以及压差。压差是任何两个给定点之间的压力差。

  应变计压力传感器包含一个传感元件,一个隔膜。隔膜的任何变形都会引起应变片电阻的变化。通常,惠斯通电桥中使用 4 个量规,以最大限度地提高传感器的灵敏度,这种电阻变化被转换成可用的输出信号。

  应变计压力传感器组件:连接器 (A)、外壳 (B)、应变计 (C) 和压力入口 (D)

  在应变计型压力传感器中,箔或硅应变计布置为惠斯通电桥。应变仪连接到某种隔膜上,当施加压力时隔膜会发生偏转。然后由惠斯通电桥电路测量、放大和调节所得信号,以提供代表施加压力的合适传感器电压或变送器电流输出,如下图所示。

  压变是测量系统中两个压力值或两个压力点之间的压力差,因此测量两个点彼此之间的差异,而不是它们相对于大气压力或另一个参考压力的大小比如绝对真空。

  这与仅使用一个端口测量压力的静态或绝对压力传感器不同,并且通常压变计传感器封装有两个端口,管道可以连接到两个端口,并在两个不同的压力点连接到系统被测量和计算。

  电容压力传感器通过检测由于隔膜运动引起的电容变化来测量压力。它有两个电容板、一个隔膜和一个固定在未加压表面上的电极。这些板之间有一定的距离,压力的变化会使这些板之间的间隙变宽或变窄,电容的这种变化被转换为可用信号。

  根据应用,该传感器可以测量绝压、表压或差压。电容压力传感器组件:绝缘支架 (A)、隔膜 (B)、电容器板 (C) 和压力端口 (D)

  电位压力传感器由一个精密电位器组成。电位器由连接到压力敏感元件(例如隔膜)的雨刷组成,该元件上的偏转会改变刮水器的位置,电阻值在游标和电位器一端之间变化。该值是施加的压力的量度。

  电位压力传感器组件:雨刷器 (A)、电阻测量电桥电路 (B)、与压力成比例的测量 (C)、电桥电源 (D)、压力元件的活动臂 (E) 和位移 (F) )。

  谐振线压力传感器具有位于隔膜中的振弦,电子振荡器使金属丝保持振动,随着膜片中压力的变化,它会影响金属丝的张力并改变共振频率,这个频率可以被数字计数器电路感测并转换成电信号。

  谐振线压力传感器组件:谐振线 (A)、至振荡器电路 (B)、高侧支撑板 (C)、磁铁 (D)、金属管 (E)、高压膜片 (F)、流体传输端口 (G)、低压隔膜 (H)、电绝缘体 (I)、预紧弹簧 (J) 和低侧支撑板 (K)

  感应式压力传感器使用电磁感应原理工作。换能器具有连接到铁磁芯的隔膜,隔膜的轻微偏转会导致铁磁芯的线性运动,从而感应出电流。

  由于压力变化导致的磁芯运动会改变感应电流。这种电流变化被转换成可用的信号。

  压电压力传感器使用石英晶体或陶瓷材料在施加压力时产生电荷。这种以电压测量的电荷与压力的变化成正比。压电压力传感器非常灵敏且响应速度极快。

  压电压力传感器组件的截面图:螺母 (A)、外壳 (B)、晶体 (C)、隔膜 (D)、引线 (E) 和圆盘 (F)

  在一定程度上,工作原理——绝对、表压或差动——决定了传感器的结构。例如,当安装在电路板或面板上时,绝对压力传感器可以设计为响应施加在顶侧或背面的压力。为被测介质创建一个从顶部进入的端口可能会使传感器容易受到物理损坏或污垢或湿气污染等危险的影响,可以选择底部进入传感器来克服这一点。下图比较了两种类型的布局。

  仪表传感器通常设计为允许大气压力施加到一个端口,同时允许将测量的压力施加到另一个端口。

  类似地,差分传感器将具有两个端口,每个被测介质都设计为通过这些端口与传感元件接触,下图比较了仪表和差动传感器的结构。

  以地球磁场(地磁)或磁铁为例的磁场,就是一个典型例子。将不可见磁场转换为电信号和可见效应的磁传感器是长期以来研究的主题。

  磁敏传感器始于几十年前使用电磁感应效应的传感器,之后慢慢扩展到电流磁效应、磁阻效应、约瑟夫森效应和其他物理现象的应用。

  霍尔元件磁敏传感器是一种利用霍尔效应的器件。“霍尔”来源于霍尔博士发现霍尔效应的名字。

  霍尔元件磁敏传感器原理是基于在电流流过的物体上施加垂直于电流的磁场时,电动势出现在与电流和磁场都正交的方向上的现象。

  当向薄膜半导体施加电流时,霍尔效应会输出与磁通密度及其方向相对应的电压。霍尔效应用于检测磁场(如下图所示)。

  即使在磁通密度不变的静态磁场的情况下,霍尔元件也可以检测到磁场。因此,霍尔元件用于各种应用,例如与磁铁组合使用的非接触式开关、角度传感器和电流传感器。使用霍尔元件的地磁传感器广泛用于智能手机和其他应用。

  线圈磁敏传感器原理:当磁铁靠近线圈时,线圈中的磁通密度增加了 ΔB。然后,在线圈中产生产生沿阻碍磁通密度增加的方向的磁通的感应电动势/感应电流。反之,将磁铁移离线圈会降低线圈中的磁通密度,因此在线圈中会产生感应电动势和感应电流,从而增加磁通密度。

  此外,由于磁铁不移动时磁通密度没有变化,不会产生感应电动势或感应电流。通过测量该感应电动势的方向和大小,可以检测磁通密度的变化。

  由于结构简单,线圈不易损坏。然而,输出电压取决于磁通量的变化率。可能无法使用线圈来检测固定磁体或变化非常缓慢的磁通量。

  簧片开关是一种磁敏传感器,其中从左右两侧延伸的金属片(簧片)被封装在玻璃管中,在簧片的重叠位置留有间隙。(如下图所示)

  簧片开关-磁敏传感器原理:当外部施加磁场时,这些簧片会被磁化。当簧片被磁化时,重叠部分相互吸引并接触,然后开关打开。

  磁阻元件(MR)传感器元件是利用磁阻效应(MR效应)的磁传感器元件。有许多使用不同工作原理的 MR 传感器类型。

  MR效应是一种电阻随磁场变化而变化的现象,这是一种发生在磁性材料(例如铁、镍或钴)中的效应。

  磁阻元件(MR)传感器原理:当电子穿过铁磁材料(具有一定磁性的材料)并且电子的自旋发生波动时,磁化材料中(电子)的散射概率会上升和下降。这就是导致 MR 效应的原因。

  半导体磁阻元件(SMR)是利用洛伦兹力引起的电阻值变化的传感器。下图显示了N 型半导体磁阻元件(SMR)的电阻值如何变化。

  半导体磁阻元件(SMR)磁敏传感器原理:在 SMR 结构中,金属电极放置在半导体薄膜上,如下图所示的顺时针电流流过半导体薄膜时,作为N型半导体的载流子的电子逆时针流动,并且假设矢量的速度为“v”。当施加如图所示方向的磁场 B 时,电子受到洛伦兹力,路径随着弯曲而变长。

  各向异性磁阻 (AMR) 传感器由各向异性磁条线组成,其等效电阻取决于磁化方向和导电方向的角度。与其他 MR 传感器相比,AMR 传感器具有相对较低的磁阻 (MR) 比,在工业、商业和空间应用中用作运动或角度传感器以及地球磁场传感器。

  巨磁阻 (GMR) 传感器由界面导电层隔开的薄磁性层夹层组成。该设备有两种电阻状态。

  巨磁阻 (GMR) 传感器原理:当两个磁性层具有平行的磁性取向时,巨磁阻 (GMR) 传感器具有低电阻状态,而当两层具有相反取向时,巨磁阻 (GMR) 传感器具有高电阻状态。巨磁阻(GMR) 传感器是具有良好温度稳定性的精确磁场传感器。它们已广泛用于硬盘驱动器 (HDD) 行业以及工业应用中。

  隧道磁阻 (TMR)由隧道势垒隔开的铁磁材料堆叠组成。隧道磁阻 (TMR)的电阻取决于两个铁磁层之间的相对角度。

  与其他系列的磁场传感器相比,隧道磁阻 (TMR)传感器具有更好的信噪比和得分,具有前所未有的精度和极低的功耗。隧道磁阻 (TMR)传感器在温度和传感器寿命期间提供可靠和稳定的性能。因此,隧道磁阻 (TMR) 传感器在要求非常苛刻的应用中是首选。

  这篇文章就来给大家介绍一下温度传感器、温度传感器原理、温度传感器的类型。

  温度传感器是一种测量物体冷热程度的设备,以可读的形式通过电信号提供温度测量。比较常见的是热电偶和电阻温度检测器。

  在实际应用中,有许多的温度传感器可以用,根据实际应用具有不同的特性,温度传感器由两种基本物理类型组成:

  接触式和非接触式温度传感器进一步分为以下温度传感器,接下来将对这些温度传感器的原理进行解释

  恒温器是一种接触式温度传感器,由两种不同金属(如铝、铜、镍或钨)组成的双金属条组成。

  恒温器由两种热度不同的金属背靠背粘在一起组成。当天气寒冷时,触点闭合,电流通过恒温器。当它变热时,一种金属比另一种金属膨胀得更多,粘合的双金属条向上(或向下)弯曲,打开触点,防止电流流动。

  有两种主要类型的双金属条,主要基于它们在受到温度变化时的运动。有在设定温度点对电触点产生瞬时“开/关”或“关/开”类型动作的“速动”类型,以及逐渐改变其位置的较慢“蠕变”类型随着温度的变化。

  速动型恒温器通常用于我们家中,用于控制烤箱、熨斗、浸入式热水箱的温度设定点,也可以在墙上找到它们来控制家庭供暖系统。

  爬行器类型通常由双金属线圈或螺旋组成,随着温度的变化缓慢展开或盘绕。一般来说,爬行型双金属条对温度变化比标准的按扣开/关类型更敏感,因为条更长更薄,非常适合用于温度计和表盘等。

  热敏电阻通常由陶瓷材料制成,例如镀在玻璃中的镍、锰或钴的氧化物,这使得它们很容易损坏。与速动类型相比,它们的主要优势在于它们对温度、准确性和可重复性的任何变化的响应速度。

  大多数热敏电阻具有负温度系数(NTC),这意味着它们的电阻随着温度的升高而降低。但是,有一些热敏电阻具有正温度系数 (PTC),并且它们的电阻随着温度的升高而增加。

  热敏电阻的额定值取决于它们在室温下的电阻值(通常为 25 o C)、它们的时间常数(对温度变化作出反应的时间)以及它们相对于流过它们的电流的额定功率。与电阻一样,热敏电阻在室温下的电阻值从 10 兆欧到几欧姆不等,但出于传感目的,通常使用以千欧为单位的那些类型。

  以下热敏电阻在 25℃ 时的电阻值为 10KΩ,在 100℃时的电阻值为 100Ω 。当与 1kΩ 电阻器串联时,计算热敏电阻两端的电压降,从而计算两种温度下的输出电压 (Vout)跨过 12v 电源。

  通过将 R2 的固定电阻值(在我们的示例中为 1kΩ)更改为电位计或预设值,可以在预定的温度设定点获得电压输出,例如 60℃ 时的 5v 输出,并通过改变电位计获得特定的输出电压水平可以在更宽的温度范围内获得。

  但是需要注意的是,热敏电阻是非线性器件,不同热敏电阻在室温下的标准电阻值是不同的,这主要是由于它们是由半导体材料制成的。热敏电阻随温度呈指数变化,因此具有 Beta 温度常数 ( β ),可用于计算任何给定温度点的电阻。

  然而,当与串联电阻一起使用时,例如在分压器网络或惠斯通电桥型布置中,响应于施加到分压器/电桥网络的电压而获得的电流与温度成线性关系。然后,电阻两端的输出电压与温度成线、电阻式温度检测器(RTD)

  精确的温度传感器,由高纯度导电金属(如铂、铜或镍)绕成线圈制成。RTD 的电阻变化类似于热敏电阻。也可提供薄膜 RTD。这些器件有一层薄薄的铂膏沉积在白色陶瓷基板上。>

  电阻温度检测器或RTD实物图

  正温度系数 (PTC),但与热敏电阻不同,它们的输出非常线性,可产生非常准确的温度测量值。但是,它们的热灵敏度非常差

  PRT,其中最常见的是 Pt100 传感器,其在 0 ℃时的标准电阻值为 100Ω。缺点是铂价格昂贵,这种设备的主要缺点之一是其成本。与热敏电阻一样,RTD 是无源电阻器件,通过使恒定电流通过温度传感器,可以获得随温度线性增加的输出电压。

  因为 RTD 是一个电阻设备,我们需要让电流通过它们并监控产生的电压。然而,当电流流过电阻线时,由于电阻线的自热引起的任何电阻变化, I2 R ,(欧姆定律)都会导致读数错误。为避免这种情况,RTD 通常连接到惠斯通电桥网络

  具有用于引线补偿和/或连接到恒流源的附加连接线。>

  电阻式温度传感器实物图

  宽温度工作范围、可靠性、准确性、简单性和灵敏度。主要是由于其体积小。热电偶还具有所有温度传感器中最宽的温度范围,从低于 -200 ℃ 到远高于 2000 ℃ 。热电偶通常由焊接或压接在一起的不同金属(例如铜和康铜)的两个接头组成。其中一个称为冷端,保持在特定温度,而另一个是测量端,称为热端。

  两个结处于不同温度时,会在结上产生电压,用于测量温度传感器,如下所示。>

  热电偶实物图

  产生“热电”效应,从而在它们之间产生只有几毫伏 (mV) 的恒定电位差。两个结之间的电压差称为“塞贝克效应”,因为沿导线产生温度梯度,从而产生电动势。那么热电偶的输出电压是温度变化的函数。如果两个结处于相同温度,则两个结之间的电势差为零,换句话说,没有电压输出,因为V1 = V2。但是,当结点连接在电路中并且都处于不同温度时,将检测到相对于两个结点之间的温差V1 – V2的电压输出。这种电压差会随着温度的升高而增加

  需要仔细选择放大器的类型,无论是离散的还是运算放大器的形式,因为需要良好的漂移稳定性来防止热电偶频繁地重新校准。这使得斩波器和仪表类型的放大器更适合大多数温度传感应用。

  测量混凝土结构或水中的内部温度。它的分辨率优于 0.1°C,工作原理类似于热电偶温度传感器。它还具有 -20 o至 80 o C的高温范围。>

  0V型振弦式温度计实物图

  低质量防水温度探头,用于测量 –20 至 80°C 之间的温度。由于其低热质量,它具有快速响应时间。ETT-10TH型电阻温度探头专为测量钢材表面温度和测量混凝土结构表面温度而设计。ETT-10TH 可以嵌入混凝土中,用于测量混凝土内部的整体温度

  可以固定在任何相当平坦的金属或混凝土表面上,以测量表面温度。借助容易获得的两部分环氧树脂粘合剂,探头的扁平尖端可以固定在大多数表面上。如果需要,探头也可以用螺栓固定在结构表面上。

  传感器电阻是感测温度的函数。铂 RTD 具有非常好的准确度、线性度、稳定性和可重复性。ETT-10PT 型电阻温度探头配有三芯屏蔽电缆。红线提供一个连接,两根黑线一起提供另一个。因此,实现了对引线电阻和引线电阻温度变化的补偿。

  位置传感器提供位置的反馈。确定位置的一种方法是使用“距离”,如两点之间的距离,例如从某个固定点行进或移动的距离,或者使用“旋转”(角运动)。

  感应出的磁场特性的变化来检测物体的位置。第一种是称为LVDT位置传感器或者线性可变差动变压器

  铁磁芯或电枢放置在空心管内,电枢连接到被测量位置的物体。将激励电压信号施加到初级线圈,在 LVDT 的次级线圈中感应出 EMF。

  测量两个次级线圈之间的电压差,可以确定电枢的相对位置(以及它所连接的物体)。当电枢在管子中精确居中时,EMF 抵消,导致没有电压输出。但是随着电枢离开零位,电压及其极性会发生变化。所以,电压幅度及其相角用于提供信息,这些信息不仅反映了远离中心(零)位置的移动量,还反映了它的方向。

  良好的精度、分辨率、高灵敏度,并在整个传感范围内提供良好的线性度,无摩擦。虽然 LVDT 用于跟踪线性运动,但称为 RVDT(用于旋转电压差动变压器)的等效设备可以跟踪物体的旋转位置。RVDT 的功能与 LVDT 相同,仅在构造细节上有所不同。

  产生电磁场的振荡器,产生磁场的线圈。当物体进入时检测磁场变化的检测电路,以及产生输出信号的输出电路,常闭(NC)或者常闭开(NO)触点。>

  电感式接近传感器实物图

  无需检测到物体本身的任何物理接触,非常适合在肮脏或潮湿的环境中使用。电感式接近传感器的“感应”范围非常小,通常为 0.1 毫米至 12 毫米。>

  电感式接近传感器工作原理图

  常用于通过改变路口和十字路口的交通信号灯来控制交通流量。矩形电感线圈埋入柏油路面。当汽车或其他道路车辆经过此感应回路时,车辆的金属车身会改变回路电感并激活传感器,从而提醒交通信号灯控制器有车辆在等待。

  超声波接近传感器可用,但它们不能检测非金属物体。其他常用的磁性位置传感器包括:簧片开关、霍尔效应传感器和可变磁阻传感器。3、电容式位置传感器

  检测电容值的变化来确定被测物体的位置。电容由彼此分开的两块板组成,两块板之间有介电材料。电容式位置传感器检测物体的位置有两种方法:

  位置传感器。它有一个与机械轴相连的触点,该机械轴的运动可以是有角度的(旋转的)或线性的(滑块型),这会导致滑块和两个端部连接之间的电阻值发生变化,从而产生电信号输出在电阻轨道上的实际抽头位置与其电阻值之间具有比例关系。换句话说,阻力与位置成正比。>

  电位器实物图

  这种配置产生与轴位置成比例的电位或分压器类型的电路输出。然后,例如,如果在电位器的电阻元件上施加 10v 的电压,则最大输出电压将等于 10 伏的电源电压,最小输出电压等于 0 伏。

  然后电位器抽头将输出信号在 0 到 10 伏之间变化,其中 5 伏表示抽头或滑块处于其中间位置或中心位置。电位器的输出信号 (Vout) 在沿电阻轨道移动时取自中心游标连接,并且与轴的角位置成正比。

  优点:成本低、技术含量低、易于使用等,但作为位置传感器,它们也有许多缺点:运动部件磨损、精度低、可重复性低和频率响应有限。但是将电位计用作位置传感器有一个主要缺点。其游标或滑块的移动范围(以及因此获得的输出信号)受限于所使用的电位器的物理尺寸。

  确定物体的位置。一个可移动的位置磁铁附在被测物体上。波导由传输电流脉冲的导线组成,连接到位于波导末端的传感器。定位磁铁产生轴向磁场,其磁力线与磁致伸缩线和波导共面。当电流脉冲沿波导向下发送时,导线中会产生一个磁场,该磁场与永磁体(位置磁体)的轴向磁场相互作用。

  这种电荷的不均匀分布导致在导体两侧之间产生电位差,称为霍尔电压。该电势发生在横向于电流流动方向和磁场方向的方向上。

  被测量其位置的物体连接到容纳在传感器轴中的磁铁。随着物体移动,磁铁的位置相对于传感器中的霍尔元件发生变化。然后,这种位置移动会改变施加到霍尔元件的磁场强度,这反过来会反映为测量的霍尔电压的变化。这样,测得的霍尔电压就成为了物体位置的指标。8、光纤位置传感器

  在物体位置被引导到荧光光纤中的光能在光纤中被反射,并被发送到光纤的任一端,在那里被光电探测器检测到。在两个光电探测器上观察到的测量光功率比的对数将是物体到光纤末端的距离的线性函数,因此该值可用于提供物体的位置信息。

  发射的光信号从被监测的物体反射返回到光源。光特性(例如波长、强度、相位、偏振)的变化用于建立关于物体位置的信息。这些类型的传感器分为三类:透射式光学编码器

  超声波传感器可以用作接近传感器,它们报告物体在传感器的指定范围内,或者用作提供测距信息的位置传感器。超声波位置传感器的

  ,并且可以比其他类型的位置传感器检测更远距离的小物体。它们还可以抵抗振动、环境噪声、EMI和红外辐射。以上就是关于位置传感器工作原理的解释,希望大家可以多多支持我。这篇文章将给大家介绍一下加速度传感器

  。根据传感器敏感元件的不同,常见的加速度传感器有电容式、电感式、应变式等。如下图所示,PCBA上被黄色圈出来的地方为一个加速度传感器。>

  通过测量重力加速度,可以计算出设备相对于水平面的倾斜度,也可以通过分析动态加速度来计算设备的运动。

  加速度传感器经常用于大型电子设备的简单电路,尽管外观不起眼,但加速度传感器以多种方式工作,其中两种是

  如上图的模型所示,加速度传感器包含微观晶体结构,当发生振动时会产生电压,然后产生的电压会产生加速度的读数。

  。加速传感器可用于测量小到人类无法察觉到的加速度效应,例如检测地震事件或测量建筑物的共振频率。

  4、加速传感器测量高频振动如果你将加速度传感器安装在比加速度传感器测量速度更快的强烈振动的机器上,有可能存在混叠效应和偏移,从而影响测量。

  如果你测量的结构可能会产生高频振动,建议使用某种防震架将加速度传感器与这些振动隔离开来,通常是由橡胶、松紧、或者弹簧制成的比较简单的物件。

  加速度传感器在各个领域发挥着重要作用,包括工业、医疗、社会应用和国内应用,用于监测各种物体的运动。

  ,从而计算人移动的位移,并且使用一定的公式可以计算卡路里消耗。3、确定手机标题加速度传感器根据手机标题的方式在横向和纵向模式之间旋转显示。

Copyright © 2027 神机娱乐注册 TXT地图 HTML地图 XML地图